doHclust
¶
doHclust
Description¶
cluster cells using hierarchical clustering algorithm
Usage¶
doHclust(
gobject,
spat_unit = NULL,
feat_type = NULL,
expression_values = c("normalized", "scaled", "custom"),
genes_to_use = NULL,
dim_reduction_to_use = c("cells", "pca", "umap", "tsne"),
dim_reduction_name = "pca",
dimensions_to_use = 1:10,
distance_method = c("pearson", "spearman", "original", "euclidean", "maximum",
"manhattan", "canberra", "binary", "minkowski"),
agglomeration_method = c("ward.D2", "ward.D", "single", "complete", "average",
"mcquitty", "median", "centroid"),
k = 10,
h = NULL,
name = "hclust",
return_gobject = TRUE,
set_seed = T,
seed_number = 1234
)
Arguments¶
Argument |
Description |
---|---|
|
giotto object |
|
spatial unit |
|
feature type |
|
expression values to use |
|
subset of genes to use |
|
dimension reduction to use |
|
dimensions reduction name |
|
dimensions to use |
|
distance method |
|
agglomeration method for hclust |
|
number of final clusters |
|
cut hierarchical tree at height = h |
|
name for hierarchical clustering |
|
boolean: return giotto object (default = TRUE) |
|
set seed |
|
number for seed |
Details¶
Description on how to use Kmeans clustering method.
Value¶
giotto object with new clusters appended to cell metadata
Seealso¶
``hclust` <#hclust>`_