clusterCells
¶
clusterCells
Description¶
cluster cells using a variety of different methods
Usage¶
clusterCells(
gobject,
cluster_method = c("leiden", "louvain_community", "louvain_multinet", "randomwalk",
"sNNclust", "kmeans", "hierarchical"),
name = "cluster_name",
nn_network_to_use = "sNN",
network_name = "sNN.pca",
pyth_leid_resolution = 1,
pyth_leid_weight_col = "weight",
pyth_leid_part_type = c("RBConfigurationVertexPartition",
"ModularityVertexPartition"),
pyth_leid_init_memb = NULL,
pyth_leid_iterations = 1000,
pyth_louv_resolution = 1,
pyth_louv_weight_col = NULL,
python_louv_random = F,
python_path = NULL,
louvain_gamma = 1,
louvain_omega = 1,
walk_steps = 4,
walk_clusters = 10,
walk_weights = NA,
sNNclust_k = 20,
sNNclust_eps = 4,
sNNclust_minPts = 16,
borderPoints = TRUE,
expression_values = c("normalized", "scaled", "custom"),
genes_to_use = NULL,
dim_reduction_to_use = c("cells", "pca", "umap", "tsne"),
dim_reduction_name = "pca",
dimensions_to_use = 1:10,
distance_method = c("original", "pearson", "spearman", "euclidean", "maximum",
"manhattan", "canberra", "binary", "minkowski"),
km_centers = 10,
km_iter_max = 100,
km_nstart = 1000,
km_algorithm = "Hartigan-Wong",
hc_agglomeration_method = c("ward.D2", "ward.D", "single", "complete", "average",
"mcquitty", "median", "centroid"),
hc_k = 10,
hc_h = NULL,
return_gobject = TRUE,
set_seed = T,
seed_number = 1234
)
Arguments¶
Argument |
Description |
---|---|
|
giotto object |
|
community cluster method to use |
|
name for new clustering result |
|
type of NN network to use (kNN vs sNN) |
|
name of NN network to use |
|
resolution for leiden |
|
column to use for weights |
|
partition type to use |
|
initial membership |
|
number of iterations |
|
resolution for louvain |
|
python louvain param: weight column |
|
python louvain param: random |
|
specify specific path to python if required |
|
louvain param: gamma or resolution |
|
louvain param: omega |
|
randomwalk: number of steps |
|
randomwalk: number of clusters |
|
randomwalk: weight column |
|
SNNclust: k neighbors to use |
|
SNNclust: epsilon |
|
SNNclust: min points |
|
SNNclust: border points |
|
expression values to use |
|
= NULL, |
|
dimension reduction to use |
|
name of reduction ‘pca’, |
|
dimensions to use |
|
distance method |
|
kmeans centers |
|
kmeans iterations |
|
kmeans random starting points |
|
kmeans algorithm |
|
hierarchical clustering method |
|
hierachical number of clusters |
|
hierarchical tree cutoff |
|
boolean: return giotto object (default = TRUE) |
|
set seed |
|
number for seed |
Details¶
Wrapper for the different clustering methods.
Value¶
giotto object with new clusters appended to cell metadata
Seealso¶
- ``doLeidenCluster` <#doleidencluster>`_ , ``doLouvainCluster_community` <#dolouvainclustercommunity>`_ , ``doLouvainCluster_multinet` <#dolouvainclustermultinet>`_ ,
``doLouvainCluster` <#dolouvaincluster>`_ , ``doRandomWalkCluster` <#dorandomwalkcluster>`_ , ``doSNNCluster` <#dosnncluster>`_ , ``doKmeans` <#dokmeans>`_ , ``doHclust` <#dohclust>`_