screePlot
¶
screePlot
Description¶
identify significant prinicipal components (PCs) using an screeplot (a.k.a. elbowplot)
Usage¶
screePlot(
gobject,
name = "pca",
expression_values = c("normalized", "scaled", "custom"),
reduction = c("cells", "genes"),
method = c("irlba", "factominer"),
rev = FALSE,
genes_to_use = NULL,
center = F,
scale_unit = F,
ncp = 100,
ylim = c(0, 20),
verbose = T,
show_plot = NA,
return_plot = NA,
save_plot = NA,
save_param = list(),
default_save_name = "screePlot",
...
)
Arguments¶
Argument |
Description |
---|---|
|
giotto object |
|
name of PCA object if available |
|
expression values to use |
|
cells or genes |
|
which implementation to use |
|
do a reverse PCA |
|
subset of genes to use for PCA |
|
center data before PCA |
|
scale features before PCA |
|
number of principal components to calculate |
|
y-axis limits on scree plot |
|
verobsity |
|
show plot |
|
return ggplot object |
|
directly save the plot [boolean] |
|
list of saving parameters from all_plots_save_function() |
|
default save name for saving, don’t change, change save_name in save_param |
|
additional arguments to pca function, see ``runPCA` <#runpca>`_ |
Details¶
- Screeplot works by plotting the explained variance of each
individual PC in a barplot allowing you to identify which PC provides a significant contribution (a.k.a ‘elbow method’). list() Screeplot will use an available pca object, based on the parameter ‘name’, or it will create it if it’s not available (see ``runPCA` <#runpca>`_ )
Value¶
ggplot object for scree method
Examples¶
data(mini_giotto_single_cell)
screePlot(mini_giotto_single_cell, ncp = 10)