runPCA
¶
runPCA
Description¶
runs a Principal Component Analysis
Usage¶
runPCA(
gobject,
expression_values = c("normalized", "scaled", "custom"),
reduction = c("cells", "genes"),
name = "pca",
genes_to_use = "hvg",
return_gobject = TRUE,
center = TRUE,
scale_unit = TRUE,
ncp = 100,
method = c("irlba", "factominer"),
rev = FALSE,
set_seed = TRUE,
seed_number = 1234,
verbose = TRUE,
...
)
Arguments¶
Argument |
Description |
---|---|
|
giotto object |
|
expression values to use |
|
cells or genes |
|
arbitrary name for PCA run |
|
subset of genes to use for PCA |
|
boolean: return giotto object (default = TRUE) |
|
center data first (default = TRUE) |
|
scale features before PCA (default = TRUE) |
|
number of principal components to calculate |
|
which implementation to use |
|
do a reverse PCA |
|
use of seed |
|
seed number to use |
|
verbosity of the function |
|
additional parameters for PCA (see details) |
Details¶
See ``prcomp_irlba` <#prcompirlba>`_ and ``PCA` <#pca>`_ for more information about other parameters.
genes_to_use = NULL: will use all genes from the selected matrix
genes_to_use =
: can be used to select a column name of highly variable genes, created by (see ``calculateHVG` <#calculatehvg>`_ ) genes_to_use = c(‘geneA’, ‘geneB’, …): will use all manually provided genes
Value¶
giotto object with updated PCA dimension recuction
Examples¶
data(mini_giotto_single_cell)
# run PCA
mini_giotto_single_cell <- runPCA(gobject = mini_giotto_single_cell,
center = TRUE, scale_unit = TRUE)
# plot PCA results
plotPCA(mini_giotto_single_cell)