jackstrawPlot
¶
jackstrawPlot
Description¶
identify significant prinicipal components (PCs)
Usage¶
jackstrawPlot(
gobject,
expression_values = c("normalized", "scaled", "custom"),
reduction = c("cells", "genes"),
genes_to_use = NULL,
center = FALSE,
scale_unit = FALSE,
ncp = 20,
ylim = c(0, 1),
iter = 10,
threshold = 0.01,
verbose = TRUE,
show_plot = NA,
return_plot = NA,
save_plot = NA,
save_param = list(),
default_save_name = "jackstrawPlot"
)
Arguments¶
Argument |
Description |
---|---|
|
giotto object |
|
expression values to use |
|
cells or genes |
|
subset of genes to use for PCA |
|
center data before PCA |
|
scale features before PCA |
|
number of principal components to calculate |
|
y-axis limits on jackstraw plot |
|
number of interations for jackstraw |
|
p-value threshold to call a PC significant |
|
show progress of jackstraw method |
|
show plot |
|
return ggplot object |
|
directly save the plot [boolean] |
|
list of saving parameters from all_plots_save_function() |
|
default save name for saving, don’t change, change save_name in save_param |
Details¶
- The Jackstraw method uses the ``permutationPA` <#permutationpa>`_ function. By
- systematically permuting genes it identifies robust, and thus significant, PCs.
list()
Value¶
ggplot object for jackstraw method
Examples¶
list("\n", "\n", "data(mini_giotto_single_cell)\n", "\n", "# jackstraw package is required to run\n", "jackstrawPlot(mini_giotto_single_cell, ncp = 10)\n", "\n")