doKmeans
¶
doKmeans
Description¶
cluster cells using kmeans algorithm
Usage¶
doKmeans(
gobject,
expression_values = c("normalized", "scaled", "custom"),
genes_to_use = NULL,
dim_reduction_to_use = c("cells", "pca", "umap", "tsne"),
dim_reduction_name = "pca",
dimensions_to_use = 1:10,
distance_method = c("original", "pearson", "spearman", "euclidean", "maximum",
"manhattan", "canberra", "binary", "minkowski"),
centers = 10,
iter_max = 100,
nstart = 1000,
algorithm = "Hartigan-Wong",
name = "kmeans",
return_gobject = TRUE,
set_seed = T,
seed_number = 1234
)
Arguments¶
Argument |
Description |
---|---|
|
giotto object |
|
expression values to use |
|
subset of genes to use |
|
dimension reduction to use |
|
dimensions reduction name |
|
dimensions to use |
|
distance method |
|
number of final clusters |
|
kmeans maximum iterations |
|
kmeans nstart |
|
kmeans algorithm |
|
name for kmeans clustering |
|
boolean: return giotto object (default = TRUE) |
|
set seed |
|
number for seed |
Details¶
Description on how to use Kmeans clustering method.
Value¶
giotto object with new clusters appended to cell metadata
Seealso¶
``kmeans` <#kmeans>`_
Examples¶
data(mini_giotto_single_cell)
mini_giotto_single_cell = doKmeans(mini_giotto_single_cell, centers = 4, name = 'kmeans_clus')
plotUMAP_2D(mini_giotto_single_cell, cell_color = 'kmeans_clus', point_size = 3)